Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Brain Behav Immun ; 114: 275-286, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648004

RESUMO

BACKGROUND: Sex-determined differences are rarely addressed in the management of diseases, despite well-known contrasting outcomes between female and male patients. In COVID-19 there is a remarkable disparity, with higher rates of mortality and more severe acute disease in men compared to women, who are mostly affected by long COVID-19. Furthermore, whether androgens play a protective or detrimental role in COVID-19 is still a matter of debate. Hence, the adequate management of the disease, especially regarding men presenting acute disease aggravation, still needs important data to elucidate the interplay between sex hormones and host immune responses that drive the worse evolution in male patients. METHODS: A cohort of 92 controls and 198 non-severe and severe COVID-19 patients, from both sexes, was assessed for clinical outcomes, plasma steroids, gonadotropins, sex hormone binding globulin (SHBG) and immune mediators, before vaccination. These data were correlated with the global gene expression of blood leukocytes. The androgen receptor (AR) signaling pathway was investigated by transcriptomics and tracheal aspirate was obtained from severe patients for SARS-COV-2 quantification in the respiratory tract. The interplay among clinical, endocrine and immunological data deciphered the sex differences in COVID-19. Importantly, statistical analyses, using 95% confidence interval, considered confounding factors such as age and comorbidities, to definitely parse the role of androgens in the disease outcome. RESULTS: There were notable contrasting levels of testosterone and dihydrotestosterone (DHT) throughout the disease course in male but not female patients. Inflammatory mediators presented significant negative correlations with testosterone, which was partially dependent on age and diabetes in men. Male subjects with severe COVID-19 had a significant up regulation of the AR signaling pathway, including modulation of TMPRSS2 and SRD5A1 genes, which are related to the viral infection and DHT production. Indeed, men had a higher viral load in the tracheal aspirate and levels of DHT were associated with increased relative risk of death. In contrast, the testosterone hormone, which was notably reduced in severe disease, was significantly related with susceptibility to COVID-19 worsening in male patients. Secondary hypogonadism was ruled out in the male severe COVID-19 subjects, as FSH, LH, and SHBG levels were not significantly altered. Instead, these subjects tended to have increased gonadotropin levels. Most interestingly, in this study we identified, for the first time, combined sets of clinical and immunoendocrine parameters that together predicted progression from non-severe to severe COVID-19 in men. One of the limitations of our study was the low or undetectable levels of DHT in many patients. Then, the evaluation of enzymes related to biosynthesis and signaling by androgens was mandatory and reiterated our findings. CONCLUSIONS: These original results unraveled the disease immunoendocrine regulation, despite vaccination or comorbidities and pointed to the fundamental divergent role of the androgens testosterone and DHT in the determination of COVID-19 outcomes in men. Therefore, sex-specific management of the dysregulated responses, treatments or public health measures should be considered for the control of COVID-19 pandemic.

3.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108196

RESUMO

Periplasmic nanowires and electric conductive filaments made of the polymeric assembly of c-type cytochromes from Geobacter sulfurreducens bacterium are crucial for electron storage and/or extracellular electron transfer. The elucidation of the redox properties of each heme is fundamental to the understanding of the electron transfer mechanisms in these systems, which first requires the specific assignment of the heme NMR signals. The high number of hemes and the molecular weight of the nanowires dramatically decrease the spectral resolution and make this assignment extremely complex or unattainable. The nanowire cytochrome GSU1996 (~42 kDa) is composed of four domains (A to D) each containing three c-type heme groups. In this work, the individual domains (A to D), bi-domains (AB, CD) and full-length nanowire were separately produced at natural abundance. Sufficient protein expression was obtained for domains C (~11 kDa/three hemes) and D (~10 kDa/three hemes), as well as for bi-domain CD (~21 kDa/six hemes). Using 2D-NMR experiments, the assignment of the heme proton NMR signals for domains C and D was obtained and then used to guide the assignment of the corresponding signals in the hexaheme bi-domain CD. This new biochemical deconstruction-based procedure, using nanowire GSU1996 as a model, establishes a new strategy to functionally characterize large multiheme cytochromes.


Assuntos
Proteínas de Bactérias , Geobacter , Proteínas de Bactérias/metabolismo , Oxirredução , Citocromos/metabolismo , Transporte de Elétrons , Geobacter/metabolismo , Heme/metabolismo
4.
Sci Rep ; 13(1): 4345, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927952

RESUMO

Serological assays have been widely used to detect anti-SARS-CoV-2 antibodies, which are generated from previous exposure to the virus or after vaccination. The presence of anti-SARS-CoV-2 Nucleocapsid antibodies was recently reported in patients´ urine using an in-house urine-based ELISA-platform, allowing a non-invasive way to collect clinical samples and assess immune conversion. In the current study, we evaluated and validated another in-house urine-based ELISA for the detection of anti-SARS-CoV-2 Spike antibodies. Three partial recombinant SARS-CoV-2 Spike proteins comprising the Receptor Binding Domain, expressed in eukaryotic or prokaryotic systems, were tested in an ELISA platform against a panel of over 140 urine and paired serum samples collected from 106 patients confirmed positive for SARS-CoV-2 by qRT-PCR. The key findings from our study were that anti-SARS-CoV-2 Spike antibodies could be detected in urine samples and that the prokaryotic expression of the rSARS-CoV-2 Spike protein was not a barrier to obtain relatively high serology efficiency for the urine-based assay. Thus, use of a urine-based ELISA assay with partial rSARS-CoV-2 Spike proteins, expressed in a prokaryotic system, could be considered as a convenient tool for screening for the presence of anti-SARS-CoV-2 Spike antibodies, and overcome the difficulties arising from sample collection and the need for recombinant proteins produced with eukaryotic expression systems.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Sensibilidade e Especificidade
5.
Immunology ; 169(3): 323-343, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36740582

RESUMO

COVID-19 has a broad spectrum of clinical manifestations associated with the host immune response heterogeneity. Despite the advances in COVID-19 research, it is still crucial to seek a panel of molecular markers that enable accurate stratification of COVID-19 patients. Here, we performed a study that combined analysis of blood transcriptome, demographic data, clinical aspects and laboratory findings from 66 participants classified into different degrees of COVID-19 severity and healthy subjects. We identified a perturbation in blood-leukocyte transcriptional profile associated with COVID-19 aggravation, which was mainly related to processes that disfavoured lymphocyte activation and favoured neutrophil activation. This transcriptional profile stratified patients according to COVID-19 severity. Hence, it enabled identification of a turning point in transcriptional dynamics that distinguished disease outcomes and non-hospitalized from hospitalized moderate patients. Central genes of this unique neutrophil signature were S100A9, ANXA3, CEACAM6, VNN1, OLFM4, IL1R2, TCN1 and CD177. Our study indicates the molecular changes that are linked with the differing clinical aspects presented by humans when suffering from COVID-19, which involve neutrophil activation.


Assuntos
COVID-19 , Humanos , COVID-19/genética , Neutrófilos , Transcriptoma , Biomarcadores
6.
NPJ Vaccines ; 8(1): 15, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781862

RESUMO

The current COVID-19 vaccines protect against severe disease, but are not effective in controlling replication of the Variants of Concern (VOCs). Here, we used the existing pre-clinical models of severe and moderate COVID-19 to evaluate the efficacy of a Spike-based DNA vaccine (pCTV-WS) for protection against different VOCs. Immunization of transgenic (K18-hACE2) mice and hamsters induced significant levels of neutralizing antibodies (nAbs) to Wuhan and Delta isolates, but not to the Gamma and Omicron variants. Nevertheless, the pCTV-WS vaccine offered significant protection to all VOCs. Consistently, protection against lung pathology and viral load to Wuhan or Delta was mediated by nAbs, whereas in the absence of nAbs, T cells controlled viral replication, disease and lethality in mice infected with either the Gamma or Omicron variants. Hence, considering the conserved nature of CD4 and CD8 T cell epitopes, we corroborate the hypothesis that induction of effector T-cells should be a main goal for new vaccines against the emergent SARS-CoV-2 VOCs.

7.
Viruses ; 15(2)2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36851787

RESUMO

COVID-19 is associated with a dysregulated immune response. Currently, several medicines are licensed for the treatment of this disease. Due to their significant role in inhibiting pro-inflammatory cytokines and lipid mediators, glucocorticoids (GCs) have attracted a great deal of attention. Similarly, the endocannabinoid (eCB) system regulates various physiological processes including the immunological response. Additionally, during inflammatory and thrombotic processes, phospholipids from cell membranes are cleaved to produce platelet-activating factor (PAF), another lipid mediator. Nonetheless, the effect of GCs on this lipid pathway during COVID-19 therapy is still unknown. This is a cross-sectional study involving COVID-19 patients (n = 200) and healthy controls (n = 35). Target tandem mass spectrometry of plasma lipid mediators demonstrated that COVID-19 severity affected eCBs and PAF synthesis. This increased synthesis of eCB was adversely linked with systemic inflammatory markers IL-6 and sTREM-1 levels and neutrophil counts. The use of GCs altered these lipid pathways by reducing PAF and increasing 2-AG production. Corroborating this, transcriptome analysis of GC-treated patients blood leukocytes showed differential modulation of monoacylglycerol lipase and phospholipase A2 gene expression. Altogether, these findings offer a breakthrough in our understanding of COVID-19 pathophysiology, indicating that GCs may promote additional protective pharmacological effects by influencing the eCB and PAF pathways involved in the disease course.


Assuntos
COVID-19 , Fator de Ativação de Plaquetas , Humanos , Estudos Transversais , Endocanabinoides , Glucocorticoides/uso terapêutico
8.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36077133

RESUMO

The non-classical histocompatibility antigen G (HLA-G) is an immune checkpoint molecule that has been implicated in viral disorders. We evaluated the plasma soluble HLA-G (sHLA-G) in 239 individuals, arranged in COVID-19 patients (n = 189) followed up at home or in a hospital, and in healthy controls (n = 50). Increased levels of sHLA-G were observed in COVID-19 patients irrespective of the facility care, gender, age, and the presence of comorbidities. Compared with controls, the sHLA-G levels increased as far as disease severity progressed; however, the levels decreased in critically ill patients, suggesting an immune exhaustion phenomenon. Notably, sHLA-G exhibited a positive correlation with other mediators currently observed in the acute phase of the disease, including IL-6, IL-8 and IL-10. Although sHLA-G levels may be associated with an acute biomarker of COVID-19, the increased levels alone were not associated with disease severity or mortality due to COVID-19. Whether the SARS-CoV-2 per se or the innate/adaptive immune response against the virus is responsible for the increased levels of sHLA-G are questions that need to be further addressed.


Assuntos
COVID-19 , Antígenos HLA-G , Antígenos de Histocompatibilidade Classe I , Humanos , Proteínas de Checkpoint Imunológico , Plasma , SARS-CoV-2
9.
J Immunol ; 209(2): 250-261, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35768148

RESUMO

Lipid and cholinergic mediators are inflammatory regulators, but their role in the immunopathology of COVID-19 is still unclear. Here, we used human blood and tracheal aspirate (TA) to investigate whether acetylcholine (Ach), fatty acids (FAs), and their derived lipid mediators (LMs) are associated with COVID-19 severity. First, we analyzed the perturbation profile induced by SARS-CoV-2 infection in the transcriptional profile of genes related to the ACh and FA/LM pathways. Blood and TA were used for metabolomic and lipidomic analyses and for quantification of leukocytes, cytokines, and ACh. Differential expression and coexpression gene network data revealed a unique transcriptional profile associated with ACh and FA/LM production, release, and cellular signaling. Transcriptomic data were corroborated by laboratory findings: SARS-CoV-2 infection increased plasma and TA levels of arachidonic acid, 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid, 11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid, and ACh. TA samples also exhibited high levels of PGE2, thromboxane B2, 12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid, and 6-trans-leukotriene B4 Bioinformatics and experimental approaches demonstrated robust correlation between transcriptional profile in Ach and FA/LM pathways and parameters of severe COVID-19. As expected, the increased neutrophil-to-lymphocyte ratio, neutrophil counts, and cytokine levels (IL-6, IL-10, IL-1ß, and IL-8) correlated with worse clinical scores. Glucocorticoids protected severe and critical patients and correlated with reduced Ach levels in plasma and TA samples. We demonstrated that pulmonary and systemic hyperinflammation in severe COVID-19 are associated with high levels of Ach and FA/LM. Glucocorticoids favored the survival of patients with severe/critical disease, and this effect was associated with a reduction in ACh levels.


Assuntos
Acetilcolina , COVID-19 , Ácido Araquidônico , Ácidos Araquidônicos/farmacologia , Ácidos Graxos , Glucocorticoides , Humanos , SARS-CoV-2
10.
Biomolecules ; 12(5)2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625532

RESUMO

Patients with COVID-19 predominantly have a respiratory tract infection and acute lung failure is the most severe complication. While the molecular basis of SARS-CoV-2 immunopathology is still unknown, it is well established that lung infection is associated with hyper-inflammation and tissue damage. Matrix metalloproteinases (MMPs) contribute to tissue destruction in many pathological situations, and the activity of MMPs in the lung leads to the release of bioactive mediators with inflammatory properties. We sought to characterize a scenario in which MMPs could influence the lung pathogenesis of COVID-19. Although we observed high diversity of MMPs in lung tissue from COVID-19 patients by proteomics, we specified the expression and enzyme activity of MMP-2 in tracheal-aspirate fluid (TAF) samples from intubated COVID-19 and non-COVID-19 patients. Moreover, the expression of MMP-8 was positively correlated with MMP-2 levels and possible shedding of the immunosuppression mediator sHLA-G and sTREM-1. Together, overexpression of the MMP-2/MMP-8 axis, in addition to neutrophil infiltration and products, such as reactive oxygen species (ROS), increased lipid peroxidation that could promote intensive destruction of lung tissue in severe COVID-19. Thus, the inhibition of MMPs can be a novel target and promising treatment strategy in severe COVID-19.


Assuntos
COVID-19 , Metaloproteinase 2 da Matriz , Antígenos HLA-G , Humanos , Imunidade , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 8 da Matriz/metabolismo , Estresse Oxidativo , SARS-CoV-2
11.
Viruses ; 14(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35336917

RESUMO

Previous studies have indicated that antibody responses can be robustly induced after the vaccination in individuals previously infected by SARS-CoV-2. To evaluate anti-SARS-CoV-2 humoral responses in vaccinated individuals with or without a previous history of COVID-19, we compared levels of anti-SARS-CoV-2 antibodies in the sera from 21 vaccinees, including COVID-19-recovered or -naïve individuals in different times, before and after immunization with an inactivated COVID-19 vaccine. Anti-SARS-CoV-2-specific antibodies elicited after COVID-19 and/or immunization with an inactivated vaccine were measured by ELISA and Plaque Reduction Neutralizing assays. Antibody kinetics were consistently different between the two vaccine doses for naïve individuals, contrasting with the SARS-CoV-2-recovered subjects in which we observed no additional increase in antibody levels following the second dose. Sera from SARS-CoV2-naïve individuals had no detectable neutralizing activity against lineage B.1 SARS-CoV-2 or Gamma variant five months after the second vaccine dose. Contrarily, SARS-CoV-2-recovered subjects retained considerable neutralizing activity against both viruses. We conclude that a single inactivated SARS-CoV-2 vaccine dose may be sufficient to induce protective antibody responses in individuals with previous history of SARS-CoV-2 infection.


Assuntos
COVID-19 , Vacinas Virais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , RNA Viral , SARS-CoV-2
12.
Viruses ; 13(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960790

RESUMO

Uncontrolled inflammatory responses play a critical role in coronavirus disease (COVID-19). In this context, because the triggering-receptor expressed on myeloid cells-1 (TREM-1) is considered an intrinsic amplifier of inflammatory signals, this study investigated the role of soluble TREM-1 (sTREM-1) as a biomarker of the severity and mortality of COVID-19. Based on their clinical scores, we enrolled COVID-19 positive patients (n = 237) classified into mild, moderate, severe, and critical groups. Clinical data and patient characteristics were obtained from medical records, and their plasma inflammatory mediator profiles were evaluated with immunoassays. Plasma levels of sTREM-1 were significantly higher among patients with severe disease compared to all other groups. Additionally, levels of sTREM-1 showed a significant positive correlation with other inflammatory parameters, such as IL-6, IL-10, IL-8, and neutrophil counts, and a significant negative correlation was observed with lymphocyte counts. Most interestingly, sTREM-1 was found to be a strong predictive biomarker of the severity of COVID-19 and was related to the worst outcome and death. Systemic levels of sTREM-1 were significantly correlated with the expression of matrix metalloproteinases (MMP)-8, which can release TREM-1 from the surface of peripheral blood cells. Our findings indicated that quantification of sTREM-1 could be used as a predictive tool for disease outcome, thus improving the timing of clinical and pharmacological interventions in patients with COVID-19.


Assuntos
Biomarcadores/sangue , COVID-19/diagnóstico , COVID-19/mortalidade , Leucócitos/metabolismo , Metaloproteinase 8 da Matriz/metabolismo , Índice de Gravidade de Doença , Receptor Gatilho 1 Expresso em Células Mieloides/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil , Feminino , Humanos , Inflamação , Interleucina-10/sangue , Interleucina-6/sangue , Interleucina-8/sangue , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Estudos Prospectivos , SARS-CoV-2 , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Adulto Jovem
13.
Arch. med. deporte ; 38(203): 163-167, May. 2021. tab
Artigo em Inglês | IBECS | ID: ibc-217897

RESUMO

The introduction of highly active antiretroviral therapy (HAART) was able to help to control viral condition in patients livingwith HIV/AIDS, diminishing virus concentration and increasing T CD4 + cells. However, adverse effects follow the treatment,like lipodystrophy syndrome, characterized by morphological changes in body fat distribution and changes serum lipids andglycides levels, increasing the risk for chronical diseases with cardiovascular effects. Thus, complimentary non-drug practices,as strength training, are essential to treat these patients, helping to improve their immunometabolic condition, leading to abetter coping with the disease. The aim of this study was to investigate the influence of a 12-week strength training protocolon immunometabolic system of people living with HIV/AIDS. It is a quasi-experimental study, conducted on 20 patients (16men), all living with HIV/AIDS using HAART. T CD4 + cell numbers, serum triglycerides, cholesterol (total and fractions) andglycemia were measured before and after training. The data underwent to descriptive statistics using a paired T test, withthe significance level set at p <0.05.There was a significant increase of 15.4% (p=0.009) on T CD4 + cells and, although notstatistically significant, reduction on glycemia, total cholesterol and triglycerides and increase on HDL-cholesterol fraction.So, it is suggested that strength training may be effective on immunometabolic condition of people living with HIV / AIDS,increasing T CD4+ cells and controlling serum levels of lipids and glycides.(AU)


La introducción de la terapia antirretroviral altamente activa (HAART) ayudó a controlar la condición viral de los pacientes con HIV/AIDS, reduciendo la concentración del virus y aumentando las células T CD4 +. Sin embargo, los efectos adversos acompañan el tratamiento, como el síndrome de lipodistrofia, caracterizada por cambios morfológicos en la distribución de la grasa corporal y de los niveles metabólicos en los lípidos y glicidos séricos, creciendo el riesgo de enfermedades crónicas con impacto cardiovascular. Así, los tratamientos complementarios no medicados, como el entrenamiento de fuerza, son esenciales en el tratamiento de estos pacientes, lo que contribuye en las mejoras inmunometabólicas en esta población, lo que contribuye a hacer frente a la enfermedad. El propósito de esta investigación fue verificar la influencia de un protocolode entrenamiento de fuerza con duración de 12 semanas en los sistemas inmunometabólicos de personas con HIV/SIDA.Este es un estudio cuasi-experimental, realizado con 20 pacientes (16 hombres), todos con HIV/SIDA usando la terapia HAART,sometidos a un protocolo de entrenamiento de fuerza de 12 semanas. Se tomaron medidas de las variables número de célulasT CD4 +, niveles séricos de triglicéridos, colesterol (total y fracciones) y glucosa en sangre, antes y después del entrenamiento.Los datos fueron analizados mediante estadística descriptiva, con prueba T pareada y nivel significativo establecido en p <0,05.El resultado mostró un aumento significativo en las células T CD4 + en un 15,4% (p=0,009), aunque no es estadísticamentesignificativo, tuve la glucosa en sangre reducida, así como el colesterol total y los triglicéridos, con respectivo aumento dela fracción de colesterol HDL. Por lo tanto, sugerimos que el entrenamiento de fuerza puede ser efectivo en las condicionesinmunológicas y metabólicas de las personas que viven con HIV/AIDS, aumentando las células T CD4 + y controlando los...(AU)


Assuntos
Humanos , Masculino , Feminino , Adulto , Treinamento de Força , Terapia Antirretroviral de Alta Atividade/efeitos adversos , HIV , Síndrome de Imunodeficiência Adquirida , Lipodistrofia , Linfócitos T CD4-Positivos , Protocolos Clínicos , Esportes
14.
Braz J Microbiol ; 52(2): 531-539, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33788178

RESUMO

Accurate testing to detect SARS-CoV-2 RNA is key to counteract the virus spread. Nonetheless, the number of diagnostic laboratories able to perform qPCR tests is limited, particularly in developing countries. We describe the use of a virus-inactivating, denaturing solution (DS) to decrease virus infectivity in clinical specimens without affecting RNA integrity. Swab samples were collected from infected patients and from laboratory personnel using a commercially available viral transport solution and the in-house DS. Samples were tested by RT-qPCR, and exposure to infective viruses was also accessed by ELISA. The DS used did not interfere with viral genome detection and was able to maintain RNA integrity for up to 16 days at room temperature. Furthermore, virus loaded onto DS were inactivated, as attested by attempts to grow SARS-CoV-2 in cell monolayers after DS desalt filtration to remove toxic residues. The DS described here provides a strategy to maintain diagnostic accuracy and protects diagnostic laboratory personnel from accidental infection, as it has helped to protect our lab crew.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Estabilidade de RNA/efeitos dos fármacos , RNA Viral/análise , SARS-CoV-2/genética , Manejo de Espécimes/métodos , Testes Diagnósticos de Rotina , Genoma Viral/genética , Humanos , Desnaturação Proteica/efeitos dos fármacos , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/efeitos dos fármacos
15.
Microsc Res Tech ; 82(12): 2049-2053, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31587442

RESUMO

Orthodontic brackets, specifically in their slots, are responsible for receiving active orthodontic forces and transferring them to the teeth to be moved. The presence of an altered slot or inaccurate dimensions can influence the mechanical relationship between the bracket and archwire, interfering with the biomechanics of tooth movement. The objective of this study was by comparing the accuracy of slot placement of upper right lateral incisor metal brackets for Bioprogressive Ricketts therapy from five trademarks. The following characteristics were evaluated: height, torque, and internal parallelism of the walls of the slot. The sample included 75 brackets, 15 each from the following trademarks: 3M Abzil, Forestadent, Morelli Rocky Mountain Orthodontics, and Tecnident. Images of the slot profiles were obtained through standardized techniques using scanning electron microscopy, measured by the AutoCAD 2017 software, and compared to Ricketts prescription, respecting standard deviation with the technical and tolerance parameters present in standard ISO 27020. The results indicated that most of the evaluated characteristics were in accordance with the standard parameters, considering the tolerance adopted. There were exceptions found to this pattern of precision in the 3M Abzil brackets with regard to torque variation, and the Morelli brackets in relation to height variation and parallelism between the walls of the slot. Considering the measured dimensional characteristics, the metal brackets used in Bioprogressive Ricketts therapy has satisfactory pattern accuracy; however, there are still some specific inaccuracies in brackets from certain brands that can require more attention during the detailing phase.


Assuntos
Análise do Estresse Dentário/métodos , Incisivo/fisiologia , Braquetes Ortodônticos , Ortodontia/métodos , Humanos , Teste de Materiais , Fios Ortodônticos , Aço Inoxidável , Estresse Mecânico , Propriedades de Superfície , Torque
16.
J Phys Chem B ; 123(14): 3050-3060, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30875222

RESUMO

The triheme cytochrome PpcA from Geobacter sulfurreducens is highly abundant under several growth conditions and is important for extracellular electron transfer. PpcA plays a central role in transferring electrons resulting from the cytoplasmic oxidation of carbon compounds to the cell exterior. This cytochrome is designed to couple electron and proton transfer at physiological pH, a process achieved via the selection of dominant microstates during the redox cycle of the protein, which are ultimately regulated by a well-established order of oxidation of the heme groups. The three hemes are covered only by a polypeptide chain of 71 residues and are located in the small hydrophobic core of the protein. In this work, we used NMR and X-ray crystallography to investigate the structural and functional role of a conserved valine residue (V13) located within van der Waals contact of hemes III and IV. The residue was replaced by alanine (V13A), isoleucine (V13I), serine (V13S), and threonine (V13T) to probe the effects of the side chain volume and polarity. All mutants were found to be as equally thermally stable as the native protein. The V13A and V13T mutants produced crystals and their structures were determined. The side chain of the threonine residue introduced in V13T showed two conformations, but otherwise the two structures did not show significant changes from the native structure. Analysis of the redox behavior of the four mutants showed that for the hydrophobic replacements (V13A and V13I) the redox properties, and hence the order of oxidation of the hemes, were unaffected in spite of the larger side chain, isoleucine, showing two conformations with minor changes of the protein in the heme core. On the other hand, the polar replacements (V13S and V13T) showed the presence of two more distinctive conformations, and the oxidation order of the hemes was altered. Overall, it is striking that a single residue with proper size and polarity, V13, was naturally selected to ensure a unique conformation of the protein and the order of oxidation of the hemes, endowing the cytochrome PpcA with the optimal functional properties necessary to ensure effectiveness in the extracellular electron transfer respiratory pathways of G. sulfurreducens.


Assuntos
Proteínas de Bactérias/química , Grupo dos Citocromos c/química , Geobacter/metabolismo , Valina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Heme/química , Heme/metabolismo , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína
17.
J Environ Sci (China) ; 53: 122-131, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28372736

RESUMO

In summer 2010, twenty eight (14 PM2.5 samples plus 14 samples PM2.5-10) smoke samples were collected during wildfires that occurred in central Portugal. A portable high-volume sampler was used to perform the sampling, on quartz fibre filters of coarse (PM2.5-10) and fine (PM2.5) smoke samples. The carbonaceous content (elemental and organic carbon) of particulate matter was analysed by a thermal-optical technique. Subsequently, the particulate samples were solvent extracted and fractionated by vacuum flash chromatography into three different classes of organic compounds (aliphatics, polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds). The organic speciation was performed by gas chromatography-mass spectrometry (GC-MS). Emissions were dominated by the fine particles, which represented around 92% of the PM10. A clear predominance of carbonaceous constituents was observed, with organic to elemental carbon (OC/EC) ratios ranging between 1.69 and 245 in both size fractions. The isoprenoid ketone 6,10,14-trimethyl-2-pentadecanone, a tracer for secondary organic aerosol formation, was one of the dominant constituents in both fine and coarse particles. Retene was the most abundant compound in all samples. Good correlations were obtained between OC and both aliphatic and PAH compounds. Pyrogenic processes, thermal release of biogenic compounds and secondary processing accounted for 97% of the apportioned PM2.5 levels.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Incêndios , Hidrocarbonetos/análise , Material Particulado/análise , Aerossóis/análise , Hidrocarbonetos Policíclicos Aromáticos , Portugal , Estações do Ano
18.
Biochem J ; 474(5): 797-808, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28093471

RESUMO

Geobacter bacteria usually prevail among other microorganisms in soils and sediments where Fe(III) reduction has a central role. This reduction is achieved by extracellular electron transfer (EET), where the electrons are exported from the interior of the cell to the surrounding environment. Periplasmic cytochromes play an important role in establishing an interface between inner and outer membrane electron transfer components. In addition, periplasmic cytochromes, in particular nanowire cytochromes that contain at least 12 haem groups, have been proposed to play a role in electron storage in conditions of an environmental lack of electron acceptors. Up to date, no redox partners have been identified in Geobacter sulfurreducens, and concomitantly, the EET and electron storage mechanisms remain unclear. In this work, NMR chemical shift perturbation measurements were used to probe for an interaction between the most abundant periplasmic cytochrome PpcA and the dodecahaem cytochrome GSU1996, one of the proposed nanowire cytochromes in G. sulfurreducens The perturbations on the haem methyl signals of GSU1996 and PpcA showed that the proteins form a transient redox complex in an interface that involves haem groups from two different domains located at the C-terminal of GSU1996. Overall, the present study provides for the first time a clear evidence for an interaction between periplasmic cytochromes that might be relevant for the EET and electron storage pathways in G. sulfurreducens.


Assuntos
Proteínas de Bactérias/química , Citocromos/química , Elétrons , Geobacter/metabolismo , Heme/química , Periplasma/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Citocromos/genética , Citocromos/metabolismo , Transporte de Elétrons , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Geobacter/genética , Heme/metabolismo , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Periplasma/química , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Shewanella/genética , Shewanella/metabolismo
19.
J Phys Chem B ; 120(39): 10221-10233, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27603556

RESUMO

A family of triheme cytochromes from Geobacter sulfurreducens plays an important role in extracellular electron transfer. In addition to their role in electron transfer pathways, two members of this family (PpcA and PpcD) were also found to be able to couple e-/H+ transfer through the redox Bohr effect observed in the physiological pH range, a feature not observed for cytochromes PpcB and PpcE. In attempting to understand the molecular control of the redox Bohr effect in this family of cytochromes, which is highly homologous both in amino acid sequence and structures, it was observed that residue 6 is a conserved leucine in PpcA and PpcD, whereas in the other two characterized members (PpcB and PpcE) the equivalent residue is a phenylalanine. To determine the role of this residue located close to the redox Bohr center, we replaced Leu6 in PpcA with Phe and determined the redox properties of the mutant, as well as its solution structure in the fully reduced state. In contrast with the native form, the mutant PpcAL6F is not able to couple the e-/H+ pathway. We carried out the reverse mutation in PpcB and PpcE (i.e., replacing Phe6 in these two proteins by leucine) and the mutated proteins showed an increased redox Bohr effect. The results clearly establish the role of residue 6 in the control of the redox Bohr effect in this family of cytochromes, a feature that could enable the rational design of G. sulfurreducens strains that carry mutant cytochromes with an optimal redox Bohr effect that would be suitable for various biotechnological applications.


Assuntos
Citocromos/metabolismo , Geobacter/química , Termodinâmica , Citocromos/química , Citocromos/genética , Transporte de Elétrons , Geobacter/crescimento & desenvolvimento , Geobacter/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Conformação Proteica
20.
Immunol Res ; 64(4): 951-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27307060

RESUMO

The aim of the present study was to investigate the association between the presence of albuminuria and cytokines profile with biomarkers of endothelial damage and oxidative stress in patients with type 1 diabetes mellitus (DM1). The sample was composed by 35 healthy individuals, 63 DM1 patients with normoalbuminuria (<30 mg of albumin/g of creatinine) and 62 DM1 patients with micro- and macroalbuminuria (≥30 mg of albumin/g of creatinine). Plasma and urinary cytokines (TNF-α, IL-6 and IL-10) and thrombomodulin levels were determined by ELISA. Oxidative status was evaluated using the TBARS and MTT assays. Diabetic patients were characterized by elevated levels of urinary cytokines TNF-α, IL-6 and IL-10. Those with macroalbuminuria presented significantly higher TNF-α and IL-10 urinary levels when compared to other groups. Urinary and plasmatic levels of TNF-α were positively correlated with plasma levels of cystatin C, creatinine, urea and albuminuria, while they were negatively correlated with estimated glomerular filtration rate. Urinary IL-10 levels proved positive correlation with fasting glucose, HbA1c, thrombomodulin and TBARS, while IL-6 plasma levels were positively correlated with HbA1c and albuminuria. Only urinary TNF-α levels were associated with the presence and severity of macroalbuminuria, after logistic regression analysis. This finding suggests that measurement of urinary TNF-α level may be helpful to evaluate progression to nephropathy in DM1 patients.


Assuntos
Biomarcadores/urina , Diabetes Mellitus Tipo 1/imunologia , Endotélio/metabolismo , Rim/metabolismo , Fator de Necrose Tumoral alfa/urina , Adulto , Albuminúria , Biomarcadores/sangue , Cistatina C/metabolismo , Diabetes Mellitus Tipo 1/diagnóstico , Progressão da Doença , Feminino , Taxa de Filtração Glomerular , Humanos , Interleucina-10/sangue , Interleucina-10/urina , Interleucina-6/sangue , Interleucina-6/urina , Rim/patologia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...